A New Quinolizidine Alkaloid from Boehmeria siamensis

Ying Gang LUO, Bo Gang LI, Guo Lin ZHANG*

Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041

Abstract: A new quinolizidine alkaloid, 3-(4-hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl)-3, 4-dehydroquinolizidine (1), was isolated from the ethanol extract of the whole plants of *Boehmeria siamensis* Craib. Its structure was elucidated on the analysis of 1D NMR and 2D NMR spectrum.

Keywords: *Boehmeria siamensis* Craib, Urticaceae, 3-(4-hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl)-3, 4-dehydroquinolizidine.

Boehmeria siamensis Craib is distributed in China, Vietnam, Laos and Thailand¹. The whole plants of *B. siamensis* were used in folk medicine^{2,3}. Previous studies on the plants of this genus led to the isolation of different compounds such as alkaloids, flavones, lignans, triterpenoids and its glycosides⁴⁻⁹. Some antimicrobial alkaloids were obtained from *B. cylindrical*⁴. In the investigation of the whole plant of *B. siamensis*, a new alkaloid, 3-(4-hydroxyphenyl)-4-(3-methoxy -4-hydroxyphenyl)-3, 4-dehydroquinolizidine **1**, was isolated and its structure was elucidated based on spectral data.

Compound 1, colorless crystal, m. p. $123 \sim 125^{\circ}$ C, gave positive reaction with Dragendorff's reagent. Its APIESMS gave quasi-molecular ion peak at m/z 352 ([M+H]⁺). Its ion peak at m/z 351.1828 in HREIMS revealed the molecular formula C₂₂H₂₅NO₃ (calcd: 351.1834). The ¹H NMR signals (**Table 1**) of compound 1 at δ 7.25 and 7.07 (each 2 H, d, J = 8.0 Hz) suggested the presence of one *p*-substituted phenyl ring (ring C). A 1, 3, 4-substituted phenyl ring (ring D) was recognized from the signals at δ 7.12 (1 H, d, J = 8.4 Hz), 6.94 (1 H, dd, J = 8.4, 1.6 Hz) and 6.92 (1 H, d, J = 1.6 Hz). The hydroxy groups provided by the IR absorption at 3423 cm⁻¹ could be

Ying Gang LUO et al.

located to the aromatic rings considering the 13 C NMR signals at δ 157.4 and 146.5 for oxygenated C-atom (**Table 1**). The ¹H NMR signal at δ 3.59 (3 H, s) and the ¹³C NMR signal at δ 55.6 (q) suggested the presence of a methoxy group, which could be located at C-3" in view of the HMBC cross signals -OMe/C-3", H-2"/C-3" and H-5"/C-3" (Table 1). Besides the signals for the two phenyl rings and a methoxy group, in the 13 C NMR spectrum (DEPT, Table 1) six signals for methenes, two signals for double bond and one signal for methine at δ 61.2, 55.7, 40.1, 33.5, 26.2, 24.7, 131.8, 131.3 and 58.1 were observed. The ion peaks in EIMS at m/z 268 and 84 resulted from Retro Diels-Alder reaction of A/B rings suggested the presence of quinolizidine skeleton. The Bohlman adsorption at 2853 cm⁻¹ in the IR spectrum of **1** suggested that A and B ring must be trans fused. According to ¹H, ¹H-COSY, HMQC and HMBC (**Table 1**) the connectivity of the phenyl rings and the quinolizidine backbone were confirmed. Thus, the structure of 1 was elucidated as 3-(4-hydroxyphenyl)-4-(3- methoxy-4-hydroxyphenyl)-3, 4-dehydroquinolizidine.

Table 1 NMR data of compound 1 in C₅D₅N (¹H: 400 MHz; ¹³C: 100 MHz)

NO	\$	S (I ' II)		
NO.	δ _C	δ _H (J 1n Hz)	'H-'H COSY	HMBC (observed)
2	61.2	3.76, 3.11 (d, 11.6)	2-Ha, 2-Hb	
3	131.8			2'-Н, 6'-Н
4	131.3			2"-Н
5	40.1	2.65, 2.52 m	5-Ha, 5-Hb, 6-H	
6	58.1	2.21 m	5-Ha, 5-Hb, 7-H	2-Н
7	26.2	1.31 m	6-H, 8-H	
8	24.7	1.31 m	7-H, 9-H	
9	33.5	1.69 m	8-H, 10-Ha, 10-Hb	
10	55.7	3.03, 2.00 (d, 11.6)	9-H	2-Н
1'	132.8			2-H, 3'-H, 5'-H
2', 6'	130.8	7.25 d (8)	3'-Н, 5'-Н	
3', 5'	115.8	7.07 d (8)	2'-H, 6'-H	
4'	157.4			2', 6'-H, 3', 5'-H
1"	133.7			5"-Н
2"	114.2	6.92 d (1.6)		
3"	147.9			2"-H, 5"-H, -OMe
4"	146.5			5"-H, 6"-H, -OMe
5"	122.0	7.12 d (8.4)	6"-Н	
6"	115.8	6.94 dd (8.4, 1.6)	5"-Н	
-OMe	55.6	3.59 s		

References

- Institute of Botany, Chinese Academy of Sciences, *Iconographia Cormophytorum Sinicorum, Supplementum I*, **1995**, 203. 1.
- 2. Working Group of Collects of Chinese Medicines and Herbs, Collects of Chinese Medicines and Herbs, Sec. B, 1988, 781.
- Yunnan Medicines and Herbs Company, Contents of Chinese Medicines in Yunnan, 1993, 82. 3 A. Al-Shamma, S. D. Drake, L. E. Guangliardi, L. A. Mrrscher, J. K. Swayze, Phytochemistry, 4.
- **1982**, 21, 485.
- T. Takemoto, T. Miyase, G. Kusano, Phytochemistry, 1975, 14, 1890.
- T. Takemoto, T. Miyase, G. Kusano, Phytochemistry, 1975, 14, 2534 6.
- B. Talapatra, A. K. Mallik, S. K. Talapatra, J. Indian Chem. Soc., 1981, 58 (8), 815. 7.
- S. Matsuura, L. T. Lee, *Yakugaku Zasshi*, **1974**, *94*, 150. T. Takermoto, T. Miyase, *Yakugaku Zasshi*, **1974**, *94*, 1597. 8.
- 9

Received 4 September, 2000